中国盛光

激光测高卫星全波形回波数据的参数优化小波降噪

刘俊1*,姚予木1,李培楠2,刘静云1

1上海工程技术大学城市轨道交通学院,上海 201620;

²东华大学环境科学与工程学院,上海 201620

摘要 针对城市复杂场景,全波形回波中混有多种噪声,这对有效信号的提取产生了很大的影响。为解决这一问题,提出一种参数优化下的小波降噪算法。该算法首先根据波形特征设定 5 个输入参数类型,参照小波公式和一维降噪函数重构回波波形,其次依据信噪比提取出各种验证波形的对应最佳参数组合,最后依据降噪效果评价指标对取得的实验结果进行分析。在实验过程中,参数优化小波降噪算法对验证波形实现了较好的滤波效果,与其他方法对比显示,本文滤波方法相较于传统的高斯类滤波,其滤波效果大幅提升,并且参数优化小波降噪在波形分解提取地物高度中也具有一定的应用价值。

关键词 遥感;激光测高卫星;全波形回波;ICESat/GLAS;小波降噪
 中图分类号 P228.3 文献标志码 A

doi: 10.3788/CJL202148.2310001

1引言

平滑滤波是激光测高卫星全波形回波数据处理中的重要步骤,小波降噪相对于高斯降噪可以较为完整地保留信号特征,已经成为平滑滤波过程中的重要方法。冰、云和陆地高程卫星/地球科学激光测高系统卫星(ICESat/GLAS)于 2003 年发射升空,2009 年结束观测任务,其中 GLAS 传感器以波形的形式记录了各采样点的高程和能量信息,获得大量的观测数据,取得了很好的科学应用效果^[1]。

针对星载激光雷达全波形数据的滤波处理,许 多国内外相关学者已进行了一定的研究。邱赛等^[2] 基于小波变换进行全波形信号处理,发现 sym7 小 波基比 db1 小波基更适合处理激光雷达波形数据。 马跃等^[3]基于分块信号统计特性差异的规律,提出 回波噪声阈值估计方法,并设计了一种自适应宽度 的高斯滤波器。梁敏等^[4]将激光雷达发射脉冲的半 峰全宽作为高斯函数的宽度,高斯滤波模板尺寸设 为9,取得了较为理想的去噪效果。Hofton 等^[5]提 出一种将激光高度计回波波形分解为一系列分量的 方法,在分解中使用初始脉冲的半峰全宽和振幅估 计数对每个高斯函数的"重要性"进行排序,并使用 L-M(Levenberg-Marquardt)方法优化了所有排序 中"重要"高斯函数的初始参数估计。Xu 等^[6]提出 了一种全波形光探测测距回波分解方法,该方法利 用峰值点来检测分离的回波分量,将拐点与对应的 峰值点相结合来检测重叠的回波分量,研究表明该 方法从全波形回波中分解出的回波分量的叠加与全 波形回波非常近似。Jutzi 等^[7]研究发现维纳滤波 器可以降低并确定表面响应的噪声,使用 L-M 方法 高斯逼近相应的表面特征,能够提取出对应的时间 位置、长度和幅值。邹永宁等[8]为了达到滤波后有 用信息损失最小化的目的,根据信号特征选择设计 了适当大小和形状的窗口来进行中值滤波等操作, 数据显示,经改进方法滤波后的信号较传统的中值 滤波信号,峰值信噪比提高了4 dB~6 dB。Li 等^[9] 基于小波分解和粒子群算法进行全波形数据处理, 该方法可以有效地分解复杂的全波形回波、估计目 标的多级距离和测量激光光斑中的目标特性。 Zhou 等^[10]提出了一种基于软阈值的小波去噪方 法,该方法能够有效地对强背景光环境下的有噪激 光雷达信号进行去噪,提高了系统的信噪比。何亮

收稿日期: 2021-06-18;修回日期: 2021-07-19;录用日期: 2021-07-31 基金项目:中央高校基本科研业务费专项资金资助(21D111320) 通信作者: *junliurs@sues.edu.cn

等^[11]使用小波阈值去噪,并针对小光斑机载激光雷 达(ALS)全波形数据进行处理,对去噪参数进行优 选,取得了较好的去噪效果,降低了噪声对后期波形 分解的影响,同时更多地保留了波形特征。刘向峰 等^[12]根据相关全波形数据的特性,采用经验模态分 解方法来构建典型的本征模函数,该方法在保证较 好降噪效果的前提下还具有较好的自适应性。谭建 伟等^[13]构建了一种自适应阈值的级联离散小波变 换方法,该方法能够使高频信号得到再分解,降低了 小波包变换去噪的复杂度。门华涛等^[14]研究表明 考虑实际地物反射率和发射波形可以明显提高回波 仿真的精度。

对于星载激光雷达全波形数据来说,小波降噪的基函数选择、分解尺度、重构方法都会影响其降噪效果。为了研究小波降噪中各种相关参数对滤波效果的影响,本文基于 GLAS 全波形数据展开研究,提出了一种参数优化下的全波形数据小波降噪算法,分析了控制参数的分布情况,对滤波效果进行了对比分析。该算法能够确定达到最佳滤波效果下对应的小波降噪参数的组合类型。

2 参数优化小波降噪算法

小波降噪的参数选择问题为本研究的中心问题,本研究利用 MATLAB 中的一维小波降噪函数 (WDEN),在小波降噪过程中选取了阈值选择标准 (TPTR)、阈值使用方式(SORH)、阈值处理随噪声 变化参数(SCAL)、分解层数(NBD)、小波基函数名 称(WNAME)5个控制参数来进行滤波,计算各个 参数组合下的滤波结果并比较分析,求得小波降噪 中最优的控制参数组合。参数优化小波降噪算法具 体的步骤如下:

1)根据波形特征设定5个输入参数类型 (TPTR、SORH、SCAL、NBD、WNAME),参照小波 公式和一维降噪函数 WDEN 重构回波波形。

 2)以信噪比最大化为优化目标,提取出各验证 波形对应的最佳参数组合。

2.1 5个控制参数

1) 阈值选择标准

共有 4 种阈值选择标准,分别是无偏估计 (rigrsure)、固定式阈值(sqtwolog)、启发式阈值 (heursure)以及极大极小值阈值(minimaxi)。 rigrsure 是用于软阈值预估计的、基于二次损失函数 (SURE)的阈值选择规则。sqtwolog采用固定的阈值 形式,产生的阈值结果是 sqrt {2lg[length(X)]}, length(X)代表序列X的长度, sqrt {•}代表求取平 方根。heursure 是 rigrsure 与 sqtwolog 的混合,若 信噪比很小,则由 SURE 估计的结果会很嘈杂,这 种情况下将会使用固定式阈值。minimaxi 是一种 固定阈值,是采用极大极小原理选择的阈值^[15]。

2) 阈值使用方式

共有两种阈值使用方式,分别是软阈值(s)和硬 阈值(h)。相比而言,软阈值处理结果更光滑但信 噪比较低,而硬阈值处理结果信噪比较高,但处理后 的波形会有抖动,不太光滑,如图1所示。图1(a)为

图 1 软硬阈值波形对比。(a)软阈值下波形处理结果;(b)硬阈值下波形处理结果

Fig. 1 Waveform comparison of soft and hard thresholds. (a) Waveform processing result under soft threshold; (b) waveform processing result under hard threshold 软阈值的波形处理结果,图 1(b)为硬阈值的波形处理结果,两个波形其他的输入控制参数完全一样。

3) 随噪声水平变化的阈值处理方式

共有三种随噪声水平变化的阈值处理方式,分 别是不随噪声水平变化(one)、根据第一层小波分解 的噪声水平估计进行调整(sln)以及根据每一层小 波分解的噪声水平估计进行调整(mln)。

4) 分解层数

小波分解的层数被指定为正整数,每层分解都 会解构出一个近似分量和一个细节分量。

5) 小波基函数名称

小波基函数名称被指定为用于去噪的字符数 组。小波变换中采用的小波基函数具有多样性,使 用不同的小波基函数分析相同的波形会有不同的结 果。表1为常用小波基函数名称所对应的重要参数 的特点^[11]。

表 1	常用小波基函数名称参数特点

Table 1 Parameter characteristics of commonly used wavelet basis function name										
Family	Short name	Orthogonal	Biorthogonal	Compact support	Support width	Filters length	Symmetry	Vanishing moment		
Haar	haar	Yes	Yes	Yes	1	2	Symmetry	1		
Dmeyer	dmey	Yes	Yes	Yes	_	_	Symmetry			
Fejer-korovkin	fk	Yes	—	Yes						
Daubechies	db	Yes	Yes	Yes	2n - 1	2n	Asymmetry (except db1)	N		
Symlets	sym	Yes	Yes	Yes	2n - 1	2n	Approximately symmetry	N		
Coiflets	coif	Yes	Yes	Yes	6n - 1	6 <i>n</i>	Approximately symmetry	2N		
Biorthogonal	bior	No	Yes	Yes	Decompose: $2n_r + 1$ Reconstruct: $2n_d + 1$	$\max(2n_r, 2^{nd}) + 2$	Symmetry	$N_{ m r}$		
Reversebior	rbio	No	Yes	Yes	Decompose: $2N_r + 1$ Reconstruct: $2N_d + 1$	$\max(2N_r, 2^{nd}) + 2$	Symmetry	N_d		

小波基函数种类繁多,本研究选取了 MATLAB小波工具箱中主要的8个小波基函数进 行分析介绍。表1给出了函数依次对应的7个参数 性质,分别是正交性、双正交性、紧支撑性、支撑参 数、滤波器宽度、对称性以及消失矩,在小波的分解 和重构中,这些参数性质都会影响波形的特征。

2.2 参数范围的确定

参数种类形式多样,研究中需要对其中涉及的 参数进行适当的分析以确定输入参数的范围。首先 要设定函数中前面的 TPTR、SORH、SCAL 这三个 输入参数,它们的种类分别是4种、2种、3种,类别 较少,因此这三个输入参数的种类在算法中全部被 采纳。接下来是分解层数和小波基函数的确定。分 解层数过少,降噪效果很差,滤波后的波形很难用于 后续的研究,同时一维激光雷达全波形也不宜设定 太多的分解层数,因此本研究将分解层数的研究区 域设为 3~6 层。小波基函数名称的确定则是小波 降噪的重点,本研究用到的小波函数主要就是表 1 中的 8种,这几个函数还有许多阶数,表 2 给出本文 中所用小波基函数的阶数情况。

我 一个人们们的小饭坐出奴的所奴旧儿	表 2	本文所用的小波基函数的阶数情况
--------------------	-----	-----------------

Table 2 Order of wavelet basis functions used in this paper	per
---	-----

Short name	Specific order	Number
haar	haar	1
dmey	dmey	1
fk	fk4, fk6, fk8, fk14, fk18, fk22	6
db	db1, db2, db3, db4, db5, db6, db7, db8, db9, db10	10
sym	sym1, sym2, sym3, sym4, sym5, sym6, sym7, sym8	8
coif	coif1, coif2, coif3, coif4, coif5	5

研究论文	论文
------	----

	表2续	
Short name	Specific order	Number
bior	bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8	15
rbio	rbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4, rbio2.6, rbio2.8, rbio3.1, rbio3.3, rbio3.5, rbio3.7, rbio3.9, rbio4.4, rbio5.5, rbio6.8	15

用同名不同阶的小波基函数分解后,其回波波 形之间有或多或少的差别,分析统计这些差别可以 丰富研究的多样性和全面性。表2统计了小波基函 数各阶数的数量,从中可以看出在补充完更多的小 波基函数信息之后,小波基函数名称共计61个。至 此所有的参数范围都已经设定完毕,共有4×2× 3×4×61=5856种参数组合。下面将阐述设定控 制参数组合后的波形重构和分解情况,并分析得出 对于波形数据的最佳小波降噪控制参数组合和整体 控制参数的分布情况。

2.3 波形分解和重构

在星载激光雷达全波形数据中,接收到的回波 信号主要包括对应的大气信息、太阳的背景噪声以 及电噪声,它们都是来自信号检测和数据采集系统。 由于电噪声具有连续的时域、随机的幅值与相位,一 般将其近似为白噪声,整体的背景噪声可以近似看 成是直流信号和白噪声的混合信号。因此,激光雷 达方程可以表示为

f(t) = r(t) + w(t) + d(t), (1) 式中,f(t)代表激光雷达回波信号的实际接收值, r(t)代表回波信号的真实值,w(t)代表接收数据存 在的白噪声,d(t)代表辐射光的直流信号。

小波降噪的目的是降低噪声使滤波后波形更加 接近 r(t),同时去除 w(t)和 d(t)带来的影响。不 同的控制参数下处理的波形表现出的特征不同,每 一层分解都是将此尺度下的相应波形分解为一个细 节函数与近似函数,完全分解后的所有细节分量与 近似分量之和为 f(t),即

$$f(t) = \sum a_{m}^{n-1} \alpha (2^{n-1}t - m) + \sum d_{m}^{n-1} \beta (2^{n-1}t - m), \qquad (2)$$

式中, m n属于正整数集合, $a_m^{n-1} 和 d_m^{n-1}$ 分别代 表在尺度为 2^{n-1} 时波形小波分解的近似系数和细 节系数。(2)式中第一项对应的函数式是 f(t)的粗 略近似, 第二项函数式与前者形式相似, 其对应的是 f(t)的精确细节。尺度函数和小波函数可详细表 达为

$$\alpha(2^{n-1}t-l) = \sum c_{m-2l}\alpha(2^{j-1}t-m), \quad (3)$$

$$\beta(2^{n-1}t-l) = \sum (-1)^{m} \bar{c}_{1-m+2l} \alpha(2^{n-1}t-m), (4)$$

式中 *l* 属于正整数,*c* 为基本小波函数。近似系数 和细节系数的递归方程为

$$a_l^{n-1} = \frac{1}{2} \sum \bar{c}_{1-m+2l} a_m^n, \qquad (5)$$

$$d_{l}^{n-1} = \frac{1}{2} \sum (-1)^{m} \bar{c}_{1-m+2l} a_{m}^{n} \, . \tag{6}$$

波形综合近似系数的重构方程为

$$a_{m}^{n} = \sum \bar{c}_{m-2l} a_{l}^{n-1} + \sum (-1)^{m} \bar{c}_{1-m+2l} d_{l}^{j-1}$$
 (7)

每一层分解下的低频系数和高频系数都有与其 对应的近似分量与细节分量。图 2 和图 3 分别为初 始波形在 sym7 小波基、5 层分解下的近似分量示意 图和细节分量示意图,每个图有 6 个波形,最上方的 波形是原始回波。图 2 除原始回波外的 5 个波形依 次是每层分解后的近似分量波形,这些波形可以大 致描述波形的轮廓,适用于波形整体态势的分析; 图 3 除原始回波外的 5 个波形依次是每层分解后的 细节分量波形,这些波形对波形的振动很敏感,可以 表现出波形细微之处的变化,适用于波形细节部分 的分析。

2.4 滤波效果评价指标

在本文算法中,对于波形的最佳控制参数组合, 只考虑了波形的信噪比,这显得过于单一。在后续 的实验分析中添加了几个指标,用以描述波形数据 的分布情况和拟合精度,分别是峰值信噪比 (PSNR)、均方根误差(MSE, e_{MSE})和平均绝对误差 (MAE, e_{MAE})。这些指标可以更加全面地描述波 形的特性,例如波形间的偏离程度以及相似性、降 噪后有用信号的保有程度。这些指标的具体公式 如下:

$$e_{\rm MSE} = \sqrt{\frac{1}{L} \sum_{i=1}^{L} \left[O(i) - D(i) \right]^2}, \qquad (8)$$

$$e_{\rm MAE} = \frac{\sum_{i=1}^{L} |O(i) - D(i)|}{L}, \qquad (9)$$

Fig. 2 Approximate components of GLAS full-waveform wavelet decomposition

$$R_{\rm SN} = 10 \lg \left\{ \frac{\sum_{i=1}^{L} |O(i)|^2}{\sum_{i=1}^{L} [O(i) - D(i)]^2} \right\}, \quad (10)$$

L

$$R_{\rm SN_P} = 10 \lg \left\{ \frac{\sum_{i=1}^{L} O(i)_{\rm max}^2}{\sum_{i=1}^{L} [O(i) - D(i)]^{22}} \right\}.$$
 (11)

式中,O 表示初始的回波波形信号,D 表示小波降 噪后的回波波形信号。

图 5 原始回波波形 Fig. 5 Original echo waveform

2310001-6

3 实验与分析

为了验证参数优化小波降噪算法对全波形数据 的降噪效果,本研究选取了 ICESat/GLAS 中光斑 位于北京城区的 10 个回波波形作为研究对象,图 4 为这 10 个波形中心点的位置,图 5 为各个波形的原 始数据^[16]。下面的研究进行了三个方面的分析,分 别是控制参数的分布与提取、各参数组合下的滤波 效果分析以及各滤波方法下的滤波效果分析。

第 48 卷 第 23 期/2021 年 12 月/中国激光

3.1 控制参数的分布与提取

表 3 是 10 个波形的最佳控制参数组合情况,是 依据每个波形参数组合中最大信噪比来确定的,此 表中可以明显地看出这几个参数的趋向性,即除小 波基函数以外其他 4 个参数完全一致。这样就可以 基本确定,对于 ICESat/GLAS 的全波形回波数据, 若想达到更好的滤波效果,对于 TRTR、SORH、 SCAL 以及 NBD 这 4 个参数的选择是固定的,分 别为 Rigrsure、h、sln、3(这里应该是选用的最小分 解层数,本文为 3),而较好的滤波效果与小波基函 数之间的关系则很复杂。从表 3 中可以看出 bior2.4、db4 等小波基的滤波效果表现较好,但总 体来说小波基函数并未表现出比较明显的趋 向性。

表 3 10 个波形的最佳控制参数组合

No.	TPTR	SORH	SCAL	NBD	WNAME	SNR /dB
1	Rigrsure	h	sln	3	rbio3.3	34.00
2	Rigrsure	h	sln	3	db4	42.56
3	Rigrsure	h	sln	3	bior2.6	39.38
4	Rigrsure	h	sln	3	bior2.4	43.90
5	Rigrsure	h	sln	3	bior2.4	40.99
6	Rigrsure	h	sln	3	rbio5.5	48.40
7	Rigrsure	h	sln	3	sym2	43.65
8	Rigrsure	h	sln	3	bior3.9	39.45
9	Rigrsure	h	sln	3	db4	33.23
10	Rigrsure	h	sln	3	bior6.8	38.42

Table 3 Combination of ten optimal control parameters

3.2 各滤波方法的滤波效果分析

只依据信噪比来确定最佳参数组合,说服力 不足,因此在表4中添加了其他指标来评价波形 的滤波效果,从左至右的评价指标分别为信噪比、 峰值信噪比、均方根误差、平均绝对误差。此外, 全波形数据的滤波方法多种多样,各个方法之间 的滤波效果也不尽相同。基于一个确定宽度的核 函数的高斯滤波是使用较为广泛的方法^[4],在此 基础上的分块高斯分解法能够最大限度地保留回 波波形的有效信息,使其达到较好的滤波效果,同 时抑制大部分的噪声信号影响^[16]。表4将这两种 方法的降噪效果与本文对每个波形的最佳控制参 数组合下的降噪结果进行了对比,其中GF (Gaussian filtering)为高斯滤波, WF(Wavelet filtering)为小波滤波。

表 4 各滤波方法降噪效果定量对比

	Table 4	Quantitative	evaluation	of no	ise redu	iction	effect	of	each	filtering	method
--	---------	--------------	------------	-------	----------	--------	--------	----	------	-----------	--------

NI-	S	SNR /dB		PSNR		MSE			MAE			
INO.	PGF	GF	WF	PGF	GF	WF	PGF	GF	WF	PGF	GF	WF
1	6.70	12.55	34.00	26.83	31.26	52.01	0.84×10^{-2}	0.51×10^{-2}	0.46×10^{-3}	0.38×10^{-2}	0.51×10^{-2}	0.32×10^{-3}
2	4.13	15.19	42.56	27.30	36.47	63.10	3.62 $\times 10^{-2}$	1.26×10^{-2}	0.59×10^{-3}	0.52×10^{-2}	0.90×10^{-2}	0.41×10^{-3}
3	4.92	16.54	39.38	28.11	37.56	59.76	4.64×10^{-2}	1.56×10^{-2}	1.21×10^{-3}	0.61×10^{-2}	1.15×10^{-2}	0.85×10^{-3}
4	8.39	18.59	43.90	27.61	37.04	61.86	5.86×10^{-2}	1.98×10^{-2}	1.14×10^{-3}	0.76×10^{-2}	1.39×10^{-2}	0.73×10^{-3}
5	7.89	19.16	40.99	28.00	38.27	59.68	4.59×10^{-2}	1.41×10^{-2}	1.20×10^{-3}	0.76×10^{-2}	1.59×10^{-2}	0.82×10^{-3}
6	12.29	18.65	48.40	28.42	34.26	63.63	5.48×10^{-2}	2.80×10^{-2}	0.95×10^{-3}	1.12×10^{-2}	1.85×10^{-2}	0.64×10^{-3}
7	13.63	18.42	43.65	31.42	35.87	60.63	3.84×10^{-2}	2.31×10^{-2}	1.33×10^{-3}	0.91×10^{-2}	1.40×10^{-2}	0.94×10^{-3}
8	3.93	14.48	39.45	27.62	35.86	60.07	2.27×10^{-2}	0.88×10^{-2}	0.54×10^{-3}	0.43×10^{-2}	0.73×10^{-2}	0.32×10^{-3}
9	7.48	13.88	33.23	27.77	33.32	52.08	0.89×10^{-2}	0.47×10^{-2}	0.54×10^{-3}	0.33×10^{-2}	0.49×10^{-2}	0.36×10^{-3}
10	8.05	18.41	38.42	27.49	36.86	56.50	3.18×10^{-2}	1.08×10^{-2}	1.12×10^{-3}	0.52×10^{-2}	0.94×10^{-2}	0.82×10^{-3}

表 4 是高斯滤波、分段高斯滤波以及小波滤波 在不同指标下的滤波效果比较。滤波效果由好到差 依次是小波滤波、高斯滤波和分段高斯滤波。具体 到每一个波形的每一个指标,小波滤波都远优于其他两种方法,其中小波滤波的信噪比和峰值信噪比普遍要比其他两种方法高 25 dB~35 dB,其均方根

第 48 卷 第 23 期/2021 年 12 月/中国激光

误差和平均绝对误差低了一个数量级。

高斯滤波对于整体波形都是按照滤波宽度公式 计算出的固定值进行滤波,无法兼顾波形信号区域 和噪声区域的滤波需求,因此滤波后波形通常会出 现一定的展宽和峰值降低现象,这也导致这种方法 下的滤波效果一般。

分段高斯滤波在回波波形的信号段和噪声段使 用不同的滤波宽度,信号段滤波宽度较小,可以极大 地保留有效信号信息,而噪声段的滤波宽度较大,致 使波形中的噪声部分信息几乎被抹平,这极大地改 变了原始波形,因此也导致这种方法下的滤波效果 较差。 小波滤波较好的原因主要有二,一是小波函数 的滤波过程比较成熟,对于一个简单的一维波形,小 波函数的降噪能力完全覆盖;二是参数优化小波降 噪算法组合较多,通过信噪比排序可从这么多组合 中优选出此波形的一个最佳控制参数组合。如图 6 所示第 6 个光斑,黑实线为原始回波,圆圈虚线、方 块虚线和三角实线分别为高斯滤波、分段高斯滤波 以及小波滤波。可以明显地看出:高斯滤波的结果 出现了峰值降低现象;分段高斯滤波后波形的有效信 号区域中峰值略微降低,但也几乎抹平了回波波形中 的噪声部分;小波滤波后的波形几乎完美整地描述出 了原始回波,但可能存在过降噪现象。

图 6 各滤波方法下滤波效果对比

Fig. 6 Comparison of filtering effects under various filtering methods

3.3 各分解方法的地物高度提取结果分析

分别运用奇偶拐点高斯分解法(GD-OE)、 GLAH14产品算法、有效峰值提取法(EPE)、有效

分析 峰值修正法(EPC)等对相关波形进行计算,提取出 (GD-OE)、 对应数据的高程差、均值及均方根误差^[16-18]。表 5 EPE)、有效 为由7种方法提取验证的10个波形地物高度的结 表5 7种分解方法的测高结果

Table 5 Altimetry results of seven decomposition methods

NI-		Elevation /m									
INO.	Measured	By GLAH14	By GD-OE	By GD-OE and WF	By EPE	By EPE and WF	By EPC	By EPC and WF			
1	9.20	7.64	8.25	7.80	8.25	7.80	7.67	7.71			
2	80.70	78.84	6.90	31.05	82.05	82.05	80.70	80.70			
3	80.50	0.00	0.60	4.05	81.45	81.45	81.39	81.47			
4	80.90	3.91	8.10	22.80	79.50	78.90	78.90	79.21			
5	19.30	6.38	4.35	7.50	3.45	4.35	18.65	19.05			
6	18.70	20.01	20.10	20.85	20.10	19.95	20.06	20.24			
7	18.60	17.26	18.60	18.00	18.60	18.00	18.60	18.60			
8	18.60	17.84	0.00	0.00	18.30	18.00	17.85	18.10			
9	19.00	0.00	19.05	18.60	18.90	21.60	18.53	18.46			
10	12.90	12.30	13.20	13.05	15.15	15.15	12.36	12.45			
Mean	35.84	16.42	9.92	14.37	34.58	34.73	35.47	35.60			
MSE		35.98	42.07	29.00	5.14	5.10	1.02	0.98			

果、均值(Mean)与均方根误差,及其对应的实测数据,其中算法中的WF是指将平滑滤波过程改为小波滤波。

如表 5 所示,在倒数第二行的高程均值中,这 10 个验证波形实测点的均值为 35.84 m,而奇偶拐 点高斯分解法和 GLAH14 数据文件自带算法的均 值分别为 9.92 m 和 16.42 m,相对来说这两种算法 都不太准确。奇偶拐点高斯分解法在城市地物场景 的实现中,存在微弱信号有效拐点识别不出的问题, 如图 7 所示。

the waveform

图 7 为第 2 个验证波形,图中保留了本该删除 的无效拐点,从中可以看出:采样点序号为440处有 一个较小回波,拐点分解法识别时,因其在噪声阈值 线以上不能识别出两个连续的奇偶拐点,故错过了 这个微弱的有效回波信号。GLAH14 自带算法类 似于奇偶拐点法,不过它添加了一个修正方案,即在 回波波形中只测量到一个高斯波时,就将这个微弱 信号返回,并依此来给出地物高程。有效峰值提取 法的高程均值为 34.58 m,这已经很接近实测值,因 为该方法只需要提取峰值点信息,所以只要给出合 适的背景噪声阈值就可以得到正确的地物回波峰值 点信息,不过在第5个波形提取下的结果为4.35m, 与实测值 19.3m 差距较大,这是因为此光斑内地物 较复杂,19.3 m 对应的高斯波微弱,其峰值信息因 没有达到背景噪声的阈值线而被算法当作噪声信号 给去除了,此外就是有效峰值提取法的分辨率不应 超出极限分辨率 15 cm。基于以上问题,想要进一 步精确描述回波,就得想其他方法,本研究在此基础 上对分量信息进行修正,即基于提取到的高斯分量

信息修正中心位置信息,此方法下的高程均值为 35.47 m,与实测均值 35.84 m 十分接近,并且均方 根误差只有 1.02,基本达到了地物的精确测量 要求。

表 5 中第 5、7、9 列是仅将平滑滤波过程改成参数优化下的小波滤波的测高结果,其他操作不变。 其中拐点分解法采用小波滤波后其测高结果均值从 9.92 m提升到 14.37 m,均方根误差也从 42.07 降 到了 29.00,而有效峰值分解算法和修正算法采用 小波滤波后其测高结果均值的提升有限。综上所 述,滤波效果较好的数据能够改善较不精准方法下 的测量结果,但是对更高精确测量方法的帮助却很 有限,小波滤波只能说对于全波形数据的高度测量 有着一定的正向作用,高度测量的研究重点应该还 是基于分解方法的改进和算法中各阈值控制参数的 调控。

4 结 论

星载激光雷达的全波形数据能够反映光斑内地物的垂直结构信息,但在激光信号从发射到接收的过程中,受测量系统本身、大气、云层以及目标地物等的影响,回波信号中难免混有一定的噪声。对于 全波形数据去噪方面的研究方法多种多样,并不限 于本文提到的小波滤波和高斯滤波,时域中的均值 和中值滤波、频域中的傅里叶低通滤波等同样是值 得研究的滤波方法。

本研究以 ICESat/GLAS 全波形数据为载体, 针对小波降噪波形处理方法中参数的选择问题,构 建了一种参数优化后的小波降噪算法,这一算法能 够对城市复杂场景下的不同波形提取出与之适应的 控制参数组合。相较于传统的高斯类滤波,本文算 法的滤波效果有大幅提升。本文的研究也存在很多 局限和不足,不同地物(如建筑物、树木、道路等)各 自的物理性质不同,本文算法没有考虑到目标回波 性质对优化结果的影响,各种滤波方法的效果对比、 其他小波分解函数的研究以及小波分解在地物高度 测量的应用等,仍需要在后续的工作中进行进一步 的研究。

参考文献

 Wang X W, Cheng X, Gong P, et al. Earth science applications of ICESat/GLAS: a review[J]. International Journal of Remote Sensing, 2011, 32 (23): 8837-8864.

- [2] Qiu S, Xing Y Q, Li L C, et al. ICESAT-GLAS data processing based on wavelet transform [J]. Forest Engineering, 2012, 28(5): 33-35, 59.
 邱赛,邢艳秋,李立存,等.基于小波变换的 ICESAT-GLAS 波形处理[J].森林工程, 2012, 28 (5): 33-35, 59.
- [3] Ma Y, Li S, Zhou H, et al. Noise suppression method for received waveform of satellite laser altimeter based on adaptive filter [J]. Infrared and Laser Engineering, 2012, 41(12): 3263-3268.
 马跃,李松,周辉,等.利用自适应滤波星载激光测 高仪回波噪声抑制方法[J]. 红外与激光工程, 2012, 41(12): 3263-3268.
- Liang M, Ma K. Study on the method of echo signal denoising based on gauss filter [J]. Geomatics &. Spatial Information Technology, 2017, 40(1): 40-42.

梁敏,马凯.基于高斯滤波的回波信号去噪方法的研究[J].测绘与空间地理信息,2017,40(1):40-42.

- [5] Hofton M A, Minster J B, Blair J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1989-1996.
- [6] Xu L J, Li D, Li X L. A high success rate fullwaveform lidar echo decomposition method[J]. Measurement Science and Technology, 2016, 27(1): 015205.
- [7] Jutzi B, Stilla U. Range determination with waveform recording laser systems using a Wiener Filter [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(2): 95-107.
- [8] Zou Y N, Yao G J. Median filtering algorithm for adaptive window shape [J]. Optics and Precision Engineering, 2018, 26(12): 3028-3039.
 邹永宁,姚功杰. 自适应窗口形状的中值滤波[J]. 光学 精密工程, 2018, 26(12): 3028-3039.
- [9] Li D, Xu L J, Li X L. Full-waveform LiDAR echo decomposition based on wavelet decomposition and particle swarm optimization[J]. Measurement Science and Technology, 2017, 28(4): 045205.
- [10] Zhou Z R, Hua D X, Wang Y F, et al. Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique [J]. Optics and Lasers in Engineering, 2013, 51(8): 961-966.
- [11] He L. Research on small-footprint ALS fullwaveform data processing technology[D]. Chengdu: University of Electronic Science and Technology of

China, 2015.

何亮.小光斑 ALS 全波形数据处理技术研究[D]. 成都:电子科技大学, 2015.

- [12] Liu X F, Huang G H, Zhang Z J, et al. Noise reduction based on empirical mode decomposition for full waveforms data of GaoFen-7 laser altimetry[J]. Infrared and Laser Engineering, 2020, 49(11): 95-104.
 刘向锋,黄庚华,张志杰,等.高分七号激光测高中 全波形回波数据的 EMD 降噪[J].红外与激光工程, 2020, 49(11): 95-104.
- [13] Tan J W, Wang Z Y, Xu Z D. A denoising method for ICESat-GLAS waveforms using cascaded wavelet transform[J]. Engineering of Surveying and Mapping, 2019, 28(5): 58-62.
 谭建伟,王志勇,徐志达.一种利用级联小波变换的 ICESat-GLAS 波形去噪方法[J].测绘工程, 2019, 28(5): 58-62.
- [14] Men H T, Li G Y, Chen J Y, et al. Refined simulation methods of laser altimetry satellite echo waveform[J]. Chinese Journal of Lasers, 2019, 46 (1): 0110004.
 门华涛,李国元,陈继溢,等.激光测高卫星回波波形精细化模拟仿真方法研究[J].中国激光, 2019, 46(1): 0110004.
- [15] MathWorks, Help Center [EB/OL]. [2021-06-15]. https: // ww2. mathworks. cn/help/wavelet/ref/ thselect.html.
- [16] Yao Y M, Liu J, Liu S N. Study on full waveform data based on effective peak correction algorithm [J]. Laser & Optoelectronics Progress, 2021, 58 (14): 1410018.

姚予木,刘俊,刘陕南.基于有效峰值修正算法的全 波形数据研究[J].激光与光电子学进展,2021,58 (14):1410018.

- [17] Li Z. Extract 3-D information of urban buildings from ICESat/GLAS data[D]. Beijing: University of Chinese Academy of Sciences, 2011.
 李展.基于 ICESat/GLAS 数据提取城市建筑物的三 维信息[D].北京:中国科学院大学, 2011.
- [18] Li G Y, Cui C L, Chen J Y, et al. An improved method of Gaussian decomposition of satellite laser altimeter full waveform data[J]. Science of Surveying and Mapping, 2018, 43(10): 117-124.
 李国元,崔成玲,陈继溢,等.一种改进的卫星激光 测高全波形高斯分解方法[J].测绘科学, 2018, 43 (10): 117-124.

Parameter Optimization Wavelet Denoising Algorithm for Full-Waveforms Data of Laser Altimetry Satellite

Liu Jun^{1*}, Yao Yumu¹, Li Peinan², Liu Jingyun¹

¹ College of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, China; ² College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

Abstract

Objective For some complex urban scenes under laser echo, the corresponding full-waveform echo data is inevitably mixed with various noises, which affects the extraction of effective signals. Traditional Gaussian noise reduction algorithms struggle to meet the filtering requirements of both effective and noise signals. In recent years, there has been a greater focus on the filtering effect of wavelet noise reduction, which is affected by several parameters. Therefore, in this paper, a parameter optimization wavelet noise reduction algorithm is proposed to improve the filtering effect of full-waveform data.

Methods The parameter selection of wavelet denoising is the central issue of this research. This paper employs one-dimensional wavelet denoising function (WDEN) in MATLAB to select the threshold selection criterion (TPTR), threshold usage method (SORH), threshold processing with noise change parameter (SCAL), decomposition layer (NBD), and wavelet basis function name (WNAME) five control parameters for filtering, calculates the filtering results under each parameter combination, and compares to obtain the wavelet optimal combination of control parameters. The specific steps of the parameter optimization wavelet denoising algorithm and its verification process are as follows:

1) Set five input parameter types (TPTR, SORH, SCAL, NBD, WNAME) according to the waveform characteristics, and reconstruct the echo waveform by referring to the wavelet formula (Eqs. $1 \sim 7$) and the one-dimensional noise reduction function.

2) Taking the maximization of signal-to-noise ratio as the optimization goal, extract the corresponding best parameter combination of each verification waveform.

3) In the final verification, analyze the obtained experimental results according to the evaluation index of noise reduction effect.

Table 3 is the optimal control parameter combination of ten waveforms, which is **Results and Discussions** determined according to the maximum signal-to-noise ratio in each waveform parameter combination. The trend of these parameters is clearly visible in this table, which shows that, with the exception of the wavelet basis, the other four parameters outside the function are exactly the same. Table 4 compares the filtering effects of Gaussian, block Gaussian, and wavelet filtering under different indicators. The filtering effect in descending order is that of wavelet filtering, Gaussian filtering and block Gaussian filtering. Specific to each indicator of each waveform, wavelet filtering is far superior to the other two methods. The signal-to-noise ratio and peak signal-to-noise ratio of wavelet filtering are generally higher than the other two methods by 25 dB-35 dB, and its root mean square error and average absolute error are an order of magnitude lower. In the second-to-last row of Table 5, the average value of the ten verification waveforms is 35. 84 m. The average values of the even-odd inflection point Gaussian decomposition method and the GLAH14 data file algorithm are 9.92 m and 16.42 m, respectively. They are not particularly accurate in comparison. The effective inflection point of the weak signal cannot be identified in the implementation of the even-odd inflection point Gaussian decomposition method in the urban feature scene, as shown in Fig. 7. If you want to be more precise, you must consider other methods based on the problems listed above. This article presents a component information correction method based on this, that is, a method of correcting the center position information based on the extracted Gaussian component information. The average elevation using this method is 35.47 m, which is very close to the measured average elevation of 35.84 m, and the root mean square error is only 1.02, which meets the requirements for accurate measurement of ground features, as shown in the last two columns of Table 5. The height measurement results of only the wavelet filtering under parameter optimization and the other operation unchanged methods are shown in the 5th, 7th, and 9th columns of the table. The average value of the height measurement results of the inflection point decomposition method is therefore increased from

9.92 m to 14.37 m, the root mean square error has also been reduced from 42.07 to 29.00, and the effective peak decomposition algorithm and correction algorithm therefore have limited improvements.

Conclusions In summary, the wavelet noise reduction algorithm under parameter optimization can extract the appropriate combination of many control parameters, and achieve an extremely excellent filtering effect compared to the traditional method. Data with better filtering effects can improve measurement results under less accurate methods in subsequent verification, but help for more accurate measurement methods is limited. Wavelet filtering has an effect on full-waveform data height measurement. It has a positive effect, but the focus of height measurement research should be on improving the decomposition method and adjusting the threshold control parameters in the algorithm.

Key words remote sensing; laser altimetry satellite; full-waveform; ICESat/GLAS; wavelet denoising

OCIS codes 120.0280; 120.2830; 280.3400; 280.3640